作為一款高精度、高效率、高可靠性的測量儀器——
光學影像測量儀由光學放大系統對被測物體進行放大,經過CCD攝像系統采集影像特征并送入計算機后,可高效地檢測各種復雜零部件的輪廓和表面形狀尺寸、角度及位置,進行微觀檢測與質量控制。
測量誤差是指光學影像測量儀本身所固有的誤差,造成儀器的誤差是多方面的,在儀器的設計、制造和使用的各個階段都可能產生誤差,分別稱為測量儀的原理誤差、制造誤差、運行誤差。下面,小編就這三個測量誤差進行分析。
一、原理誤差
屬于影像測量儀的原理誤差的是:CCD攝像頭畸變產生的誤差、測量方法不同而產生的誤差。攝像機的制造和工藝等原因,入射光線在通過各個透鏡時的折射誤差和CD點陣位置誤差等,光學系統存在著非線性的幾何失真,使得目標像點與理論像點之間存在多種類型的幾何畸變。
測量方法不同而產生的誤差主要指不同圖像處理技術帶來的識別、量化誤差。圖像的邊緣是圖像的基本特征,是物體的輪廓或物體不同表面之間的交界在圖像中的反映。邊緣輪廓是人類識別物體形狀的重要因素,也是圖像處理中重要的處理對象。
二、制造誤差
屬于影像測量儀的制造誤差的是:導向機構產生的誤差、安裝誤差等。導向機構產生的誤差對影像測量儀來說主要是機構誤差中的直線運動定位誤差。光學影像測量儀是正交坐標系測量儀器。正交坐標系測量儀有3根相互垂直的軸線即X、Y、Z三軸,有3個運動部件沿這三根軸線運動,使CCD相對于被測工件作三維直線運動。選用高質量的運動導向機構可以減少此類誤差的影響。
三、運行誤差
屬于影像測量儀運行誤差的是:測量環境和條件變化引起的誤差(如溫度變化、電壓波動、照明條件變化、機構磨損等),以及動態誤差。由于溫度的改變,使得影像測量儀的零部件尺寸、形狀、相互位置關系以及一些重要的特性參數發生變化,從而影響這臺儀器的精度。
磨損使光學影像測量儀的零件產生尺寸、形狀、位置誤差,配合間隙增加,降低此儀器的工作精度的穩定性。因此,測量運行條件的改善可以有效地減少此類誤差的影響。